

Research Paper

Blockchain and Cybersecurity: A New Paradigm for Securing Industrial and Engineering Systems.

Ahmed El-Sayed¹, Nourhan Khalifa²

¹ Department of Information Security, Cairo University, Cairo, Egypt

² Faculty of Computer and Information Sciences, Ain Shams University, Cairo, Egypt

Received: 24 August, 2025 / Accepted: 21 September, 2025 / Published: 30 September, 2025

Abstract

The rapid integration of digital technologies in industrial and engineering systems has significantly increased efficiency, connectivity, and automation. However, this growing interconnectivity has also expanded the attack surface, exposing these systems to sophisticated cyber threats. Blockchain technology has emerged as a transformative paradigm for enhancing cybersecurity by offering decentralization, immutability, and transparency. This paper explores the intersection of blockchain and cybersecurity, focusing on their combined potential to revolutionize the protection of Industrial Control Systems (ICS), Internet of Things (IoT) networks, and engineering infrastructures. The study examines the underlying principles of blockchain—such as distributed ledger technology, consensus mechanisms, and cryptographic security—and evaluates how these can mitigate risks related to data tampering, unauthorized access, and system failures. Furthermore, it investigates blockchain's role in establishing trustless environments, enabling secure data sharing, and supporting regulatory compliance within industrial operations. Using a qualitative and analytical research approach, this paper analyzes current frameworks, existing challenges, and practical applications of blockchain-based cybersecurity across manufacturing, energy, and engineering domains. Results suggest that blockchain enhances resilience against cyberattacks, enables efficient identity management, and supports transparent auditing mechanisms. The paper concludes by outlining future directions, emphasizing the need for lightweight blockchain models, integration with AI-driven threat detection, and scalable consensus protocols tailored to industrial environments.

Keywords: Blockchain Technology, Cybersecurity, Industrial Control Systems, Internet of Things, Engineering Security, Distributed Ledger, Consensus Mechanism, Data Integrity, Smart Contracts, Decentralization, Cryptography,

Introduction

The convergence of digital technologies, automation, and interconnected systems has ushered in a new era of industrial transformation known as Industry 4.0, where Industrial Control Systems (ICS), Internet of Things (IoT) devices, and smart manufacturing platforms are deeply integrated into engineering processes (Xu et al., 2018). While this interconnectivity enables real-time monitoring, predictive maintenance, and improved operational efficiency, it also increases the susceptibility of industrial systems to cyberattacks, data breaches, and malicious manipulation (Bakhshi, 2021). Traditional cybersecurity mechanisms—such as centralized firewalls, authentication servers, and encryption layers—are often insufficient to address the complexity, scalability, and heterogeneity of modern engineering systems.

In this context, blockchain technology has emerged as a revolutionary solution that promises to redefine the foundations of cybersecurity. By leveraging decentralization, immutability, and distributed consensus, blockchain eliminates the single point of failure common in conventional systems, thereby enhancing the resilience of industrial networks (Mollah et al., 2021). Each transaction or data exchange in a blockchain is cryptographically secured and recorded in a distributed ledger, ensuring transparency, traceability, and non-repudiation (Zhou et al., 2020). These characteristics make blockchain particularly suitable for applications that require secure data logging, identity verification, and trust management among multiple entities in engineering environments.

Furthermore, the integration of blockchain with Industrial Internet of Things (IIoT) ecosystems enhances trust among connected devices, allowing secure peer-to-peer communication without relying on centralized intermediaries (Ferrag et al., 2020). This is particularly critical in sectors such as energy, manufacturing, and transportation, where unauthorized access to control systems can have catastrophic consequences. Blockchain-based smart contracts also offer new possibilities for automated cybersecurity enforcement—executing rules, permissions, and access controls autonomously when predefined conditions are met (Dorri et al., 2017).

However, despite its advantages, blockchain adoption in industrial cybersecurity faces notable challenges. These include scalability limitations, high computational costs, and integration complexities with legacy control systems (Conti et al., 2018). Moreover, industrial applications demand high-speed data processing

and minimal latency, which conflict with the relatively slower transaction throughput of blockchain networks. To achieve practical implementation, researchers and engineers must strike a balance between blockchain's security features and the performance requirements of industrial systems (Xie et al., 2019).

This paper explores the emerging paradigm of blockchain-enabled cybersecurity in industrial and engineering contexts. It provides a comprehensive overview of blockchain's role in securing data integrity, authentication, and communication across distributed networks. The study also reviews the latest trends, evaluates real-world case studies, and identifies the existing gaps that hinder widespread adoption. By integrating findings from recent literature and technological analysis, the paper aims to contribute to a clearer understanding of how blockchain can serve as a foundational layer for industrial cybersecurity, setting the stage for future innovation and standardization in secure engineering practices.

Literature Survey

The increasing interconnectivity of industrial and engineering systems has prompted extensive research into advanced cybersecurity frameworks capable of mitigating emerging digital threats. Over the past decade, blockchain technology has gained considerable attention from both academia and industry as a potential solution for enhancing the security, privacy, and trustworthiness of distributed systems (Conti et al., 2018). The decentralized nature of blockchain enables data to be verified by a network of participants rather than a single authority, thereby eliminating the vulnerabilities associated with centralized architectures.

Evolution of Blockchain in Cybersecurity

Blockchain was originally introduced as the foundational technology behind Bitcoin (Nakamoto, 2008). However, its applications have evolved far beyond digital currencies to include data integrity assurance, access control, and identity management across industrial domains (Yli-Huumo et al., 2016). In cybersecurity, blockchain serves as a tamper-resistant ledger for recording system activities and transactions, making it particularly valuable for logging and auditing purposes (Kshetri, 2017).

Researchers have explored blockchain's role in securing Industrial Control Systems (ICS), which are integral to the operation of power grids, manufacturing lines, and critical infrastructure (Zhang & Wen, 2017). Traditional ICS environments rely heavily on centralized monitoring systems, which are prone to single-point failures and unauthorized access. By contrast, blockchain distributes system data across multiple nodes, ensuring redundancy and resilience even in the event of a breach (Xie et al., 2019).

Blockchain and the Industrial Internet of Things (IIoT)

With the proliferation of Industrial IoT (IIoT) devices, maintaining secure communication between sensors, actuators, and control units has become increasingly complex. Conventional security solutions often lack scalability and adaptability in such dynamic environments. Blockchain addresses these challenges by providing a trustless framework for device authentication and secure data transmission (Ferrag et al., 2020).

Dorri et al. (2017) demonstrated that lightweight blockchain architectures can enhance IoT security by enabling distributed authorization mechanisms without overloading network resources. Similarly, Novo (2018) introduced a decentralized access control model that employs blockchain smart contracts to manage IoT device identities securely. These studies highlight blockchain's ability to replace centralized authentication servers with self-governing trust models that reduce reliance on intermediaries.

In industrial contexts, blockchain facilitates traceability and accountability, essential for monitoring system performance and preventing data manipulation. For example, in supply chain engineering, blockchain ensures that every transaction—from raw material procurement to production and delivery—is verifiable and immutable (Saberi et al., 2019). Such capabilities strengthen trust among stakeholders while reducing the likelihood of counterfeit products entering industrial systems.

Cybersecurity Enhancements through Smart Contracts

Smart contracts, one of blockchain's most significant innovations, have revolutionized the automation of cybersecurity policies. These self-executing scripts automatically enforce predefined rules once specific conditions are met (Christidis & Devetsikiotis, 2016). In industrial networks, smart contracts can automate access control, intrusion detection, and response protocols, thereby minimizing human intervention and reducing response times during cyber incidents (Nguyen et al., 2020).

In the engineering domain, smart contracts are being integrated into energy management systems, automated manufacturing, and logistics operations to ensure secure and auditable transactions between autonomous agents (Kouhizadeh & Sarkis, 2018). Moreover, combining smart contracts with machine learning enables adaptive cybersecurity models that evolve based on network behavior and threat intelligence (Sharma et al., 2020).

Challenges and Limitations

Despite its potential, blockchain adoption in industrial cybersecurity is not without challenges. The most cited limitations include scalability, latency, and energy consumption (Zhou et al., 2020). Traditional blockchain architectures such as Bitcoin and Ethereum are computationally intensive and unsuitable for

real-time control systems where millisecond-level response is required. Additionally, integrating blockchain with legacy industrial protocols like Modbus and SCADA introduces interoperability issues that require standardization (Bakhshi, 2021).

Another significant concern is data privacy. Although blockchain ensures data integrity, its transparent nature can expose sensitive industrial information to public or consortium participants (Mollah et al., 2021). To overcome this, researchers are exploring hybrid blockchain frameworks that combine private and public ledgers, enabling selective data disclosure based on access rights (Wang et al., 2019).

Emerging Research Directions

Recent literature suggests an increasing trend toward blockchain–AI convergence for cybersecurity automation (Xie et al., 2019). Artificial Intelligence (AI) techniques, particularly in anomaly detection and predictive analytics, can complement blockchain's immutability by identifying and responding to threats dynamically. Moreover, edge computing integration aims to offload computational tasks from blockchain networks, enabling faster validation and enhanced scalability (He et al., 2020).

Furthermore, post-quantum cryptography is gaining attention as an emerging direction in blockchain security. As quantum computing threatens to undermine traditional cryptographic algorithms, researchers are investigating quantum-resistant consensus mechanisms to ensure the long-term sustainability of blockchain-secured engineering systems (Aggarwal et al., 2018).

Overall, the literature establishes blockchain as a pivotal innovation in industrial cybersecurity, offering trust, transparency, and resilience. However, successful deployment requires overcoming technical barriers related to performance, privacy, and interoperability—areas that remain active research frontiers.

Methodology

The research methodology adopted in this paper is qualitative, analytical, and exploratory in nature. The purpose is to investigate the integration of blockchain technology into cybersecurity frameworks for industrial and engineering systems, exploring its current applications, advantages, and limitations. The methodology is structured around three core components: data collection, analytical framework, and evaluation approach.

Research Design

This study employs a systematic literature-based research design that integrates both primary theoretical concepts and secondary empirical findings from reputable academic databases such as IEEE Xplore,

ScienceDirect, SpringerLink, and Google Scholar. The research primarily examines peer-reviewed journal articles, conference papers, white papers, and technical reports published between 2015 and 2024 to ensure inclusion of the most recent developments in blockchain and cybersecurity integration.

The design follows the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) framework, which ensures comprehensive and unbiased literature inclusion. The study aims to provide an in-depth analysis of blockchain mechanisms that directly contribute to industrial cybersecurity, such as consensus algorithms, encryption models, and smart contract applications.

Data Collection

A structured keyword-based search was conducted using terms such as “blockchain cybersecurity,” “industrial IoT security,” “smart contracts in engineering,” “distributed ledger in manufacturing,” and “blockchain-based intrusion detection.” The search yielded approximately 120 scholarly sources, which were then filtered down to 40 relevant studies based on their technical depth, relevance to industrial and engineering domains, and inclusion of cybersecurity frameworks.

Selection criteria emphasized studies that:

- Proposed blockchain-based architectures for cybersecurity in engineering or industrial contexts.
- Reported case studies, simulations, or experiments demonstrating blockchain’s effectiveness in preventing cyber threats.
- Discussed emerging challenges or limitations in blockchain implementation for industrial networks.

The qualitative data were categorized into thematic areas—authentication and access control, data integrity, network resilience, and trust management—to ensure structured analysis.

Analytical Framework

To analyze and interpret the collected data, this study uses a comparative analytical approach that evaluates traditional cybersecurity mechanisms against blockchain-enhanced solutions. Factors such as resilience to attacks, data confidentiality, scalability, latency, and computational efficiency were considered for evaluation.

Additionally, SWOT (Strengths, Weaknesses, Opportunities, and Threats) analysis was utilized to assess blockchain’s potential within cybersecurity paradigms for industrial environments. This framework

provided a holistic understanding of how blockchain can transform cybersecurity while revealing areas requiring technological optimization.

Evaluation and Validation

Although this research is theoretical in nature, it incorporates case-based validation through documented industrial applications of blockchain cybersecurity. Examples include smart grid protection, supply chain transparency, and Industrial IoT device authentication. Each example was evaluated based on security performance metrics—including latency reduction, attack detection rate, and system reliability improvement—as reported in the reviewed literature.

Furthermore, cross-validation was achieved by comparing results from multiple studies to identify converging themes and technological consensus among researchers. The synthesis of these findings forms the empirical foundation for the results and discussion sections that follow.

Ethical Considerations

Since this study relies solely on secondary data and publicly available research, no human or animal subjects were involved. Nevertheless, the study adheres to ethical research practices, ensuring proper citation, academic integrity, and respect for intellectual property.

Results

The analysis of the collected literature and case studies reveals several key insights into the role of blockchain technology in enhancing cybersecurity within industrial and engineering systems. The results are organized into thematic areas reflecting the major contributions of blockchain to security, as well as observed limitations and challenges.

Data Integrity and Immutability

One of the most consistent findings is blockchain's ability to ensure data integrity across industrial networks. By recording all transactions on a distributed ledger, blockchain prevents unauthorized modifications, providing an immutable history of system activities (Conti et al., 2018). Studies on Industrial IoT (IIoT) networks show that blockchain-based logging reduces the risk of tampered sensor data, which is critical in automated manufacturing and smart grid operations (Dorri et al., 2017; Ferrag et al., 2020). For instance, implementations in smart energy grids demonstrated that blockchain-enabled monitoring improved the traceability of energy transactions and minimized discrepancies in usage data.

Authentication and Access Control

Blockchain also significantly enhances authentication and access control mechanisms. Traditional centralized authentication systems are prone to single-point failures, whereas blockchain provides decentralized validation of credentials. Research indicates that smart contracts can automatically enforce role-based access controls and verify user permissions in real time (Christidis & Devetsikiotis, 2016). Case studies in manufacturing networks show that blockchain-based access control reduces unauthorized entry attempts and improves accountability among operators and devices (Mollah et al., 2021).

Cyberattack Mitigation and Network Resilience

The integration of blockchain improves network resilience by distributing data and control across multiple nodes, mitigating the impact of cyberattacks. For example, Distributed Denial-of-Service (DDoS) attacks on IIoT networks were found to be less effective when blockchain-based peer-to-peer communication protocols were deployed (Yli-Huumo et al., 2016). Additionally, blockchain's consensus mechanisms provide verification processes that prevent malicious nodes from compromising the integrity of industrial networks.

Smart Contracts and Automation

Smart contracts emerged as a powerful tool for automating cybersecurity protocols. Studies show that automated execution of security policies—such as authentication, authorization, and logging—reduces response times during potential breaches (Nguyen et al., 2020). In supply chain management systems, smart contracts automatically verify product authenticity and trigger alerts if discrepancies occur, demonstrating the capability of blockchain to support autonomous cybersecurity enforcement.

Limitations and Performance Challenges

Despite these benefits, the results also highlight challenges that may limit blockchain adoption in industrial settings. The computational overhead associated with consensus algorithms such as Proof of Work (PoW) can result in high energy consumption and slower transaction speeds, which are incompatible with real-time industrial operations (Zhou et al., 2020). Additionally, interoperability issues with legacy industrial protocols and privacy concerns related to transparent ledgers remain significant barriers. Hybrid approaches combining private and public blockchains are suggested to address these issues (Wang et al., 2019).

Emerging Trends

The results indicate emerging trends in blockchain research, such as integration with artificial intelligence for predictive threat detection and the use of edge computing to reduce latency and computational load (Xie

et al., 2019; He et al., 2020). Studies also emphasize the need for lightweight consensus mechanisms and quantum-resistant cryptography to ensure long-term security and performance scalability (Aggarwal et al., 2018).

Discussion

The findings of this study underscore the transformative potential of blockchain technology in enhancing cybersecurity for industrial and engineering systems. By ensuring data integrity, decentralized control, and automation, blockchain addresses many vulnerabilities that traditional security mechanisms cannot fully mitigate. This discussion explores the implications of these findings, comparing them with existing research, and highlights both practical applications and limitations.

Enhancing Data Integrity and Trust

Blockchain's immutable ledger provides a verifiable record of all transactions and system events, significantly reducing the risk of data tampering and fraud. This feature is particularly relevant for Industrial IoT (IIoT) networks, where massive volumes of sensor data require trustworthy validation. Compared to conventional centralized logging, blockchain ensures transparency and accountability, which is critical for industries such as energy, manufacturing, and transportation (Conti et al., 2018; Dorri et al., 2017). By adopting blockchain, organizations can establish trustless networks, where devices and stakeholders can interact securely without relying on a central authority.

Automation Through Smart Contracts

The integration of smart contracts introduces significant advantages in automating cybersecurity policies. These self-executing protocols reduce human error, enforce consistent security practices, and provide real-time monitoring of access and operations (Christidis & Devetsikiotis, 2016). For instance, smart contracts in supply chain engineering ensure product traceability and authenticity, thereby enhancing security and compliance. The combination of blockchain with AI-driven predictive analytics further strengthens cybersecurity by allowing autonomous threat detection and response, reducing the lag between breach detection and mitigation (Sharma et al., 2020).

Network Resilience and Cyberattack Mitigation

The decentralized nature of blockchain enhances network resilience, distributing control and data across multiple nodes to prevent single points of failure. This property is crucial in mitigating cyberattacks such as Distributed Denial-of-Service (DDoS), ransomware, and unauthorized intrusions (Yli-Huumo et al., 2016; Mollah et al., 2021). The consensus mechanisms inherent in blockchain ensure that malicious

attempts to alter the ledger are rejected, which strengthens overall system integrity. These mechanisms align with industry requirements for highly reliable and tamper-proof operational infrastructures.

Challenges and Implementation Considerations

Despite its advantages, blockchain adoption in industrial cybersecurity faces significant technical and operational challenges. Scalability remains a pressing issue, as traditional consensus algorithms can be resource-intensive, resulting in delays incompatible with real-time industrial applications (Zhou et al., 2020). Interoperability with existing legacy systems, such as SCADA and Modbus, also complicates deployment. Furthermore, privacy concerns emerge from blockchain's transparency, which can conflict with regulations like GDPR and industry-specific confidentiality requirements (Wang et al., 2019).

To overcome these challenges, hybrid blockchain models, combining private and public ledgers, are gaining attention. These architectures allow selective visibility and control, maintaining security without exposing sensitive industrial data to unnecessary participants. Lightweight consensus protocols, edge-based processing, and quantum-resistant cryptography are additional strategies being explored to enhance performance and long-term reliability (He et al., 2020; Aggarwal et al., 2018).

Practical Implications and Industry Adoption

From a practical standpoint, the findings suggest that blockchain-enabled cybersecurity frameworks are particularly suited for applications requiring high trust, traceability, and automation. In smart manufacturing, blockchain can secure machine-to-machine communication, automate workflow verification, and facilitate compliance audits. In energy systems, blockchain enhances transaction security and prevents unauthorized access to distributed grids. Supply chains benefit from verifiable data trails that reduce fraud and improve operational transparency (Saberi et al., 2019).

The discussion highlights that the successful implementation of blockchain in industrial cybersecurity is contingent upon addressing performance bottlenecks, ensuring compatibility with legacy infrastructure, and integrating complementary technologies such as AI and edge computing. Industries must weigh the benefits of enhanced security against potential resource overheads, and adopt adaptive frameworks tailored to their operational contexts.

Contribution to Knowledge

This study contributes to the growing body of knowledge by synthesizing insights from both theoretical and empirical studies, emphasizing blockchain's role as a cybersecurity enabler rather than just a transactional ledger. It provides a comprehensive understanding of how blockchain, when combined with

smart contracts and AI, can deliver robust, autonomous, and scalable security solutions for industrial and engineering systems.

Conclusion

This study demonstrates that blockchain technology represents a transformative approach to securing industrial and engineering systems against increasingly sophisticated cyber threats. By leveraging the decentralized, immutable, and transparent nature of blockchain, industries can enhance data integrity, authentication, access control, and network resilience. The integration of smart contracts further allows automated enforcement of cybersecurity policies, reducing human error and improving operational reliability.

The literature review and analysis indicate that blockchain has successfully addressed critical vulnerabilities in Industrial IoT (IIoT) networks, supply chains, and industrial automation systems, providing traceability, tamper-proof record-keeping, and trustless interactions among devices and stakeholders. Furthermore, emerging trends such as blockchain–AI integration, edge computing, and quantum-resistant cryptography point toward a future where blockchain not only protects industrial systems but also enables intelligent, adaptive cybersecurity mechanisms.

However, practical adoption faces challenges including scalability, latency, interoperability with legacy systems, and privacy concerns. Hybrid blockchain architectures, lightweight consensus algorithms, and selective data visibility are potential solutions to address these limitations. Industries must carefully evaluate performance requirements, regulatory compliance, and infrastructure compatibility to realize the full benefits of blockchain-enabled security.

In summary, blockchain represents a new paradigm for cybersecurity in industrial and engineering contexts, offering a robust foundation for secure, automated, and trustworthy systems. Continued research and development in this field are essential to overcome current limitations, optimize implementation strategies, and fully harness blockchain's potential in safeguarding critical engineering infrastructures.

Future Research

While blockchain technology has demonstrated significant potential in enhancing cybersecurity for industrial and engineering systems, several areas remain open for further research and development. Future work should focus on addressing the limitations of current implementations and exploring innovative approaches to maximize blockchain's effectiveness in real-world applications.

One major area of exploration is scalability optimization. Traditional consensus algorithms, such as Proof of Work (PoW), are resource-intensive and introduce latency that may be unacceptable in time-sensitive industrial environments. Future research should investigate lightweight consensus mechanisms and hybrid blockchain frameworks that can deliver high throughput while maintaining security guarantees (Zhou et al., 2020).

Another promising avenue is the integration of blockchain with artificial intelligence (AI) and machine learning (ML). AI-enhanced blockchain systems can enable predictive threat detection, real-time anomaly detection, and autonomous response mechanisms for industrial networks (Sharma et al., 2020). Combining blockchain with AI could create self-healing networks capable of mitigating cyber threats proactively without human intervention.

Interoperability with legacy industrial systems also warrants further attention. Many existing industrial control systems (ICS) and supervisory control and data acquisition (SCADA) networks rely on protocols that are not natively compatible with blockchain. Research into middleware solutions, cross-chain communication protocols, and standardized interfaces could facilitate smoother adoption in heterogeneous industrial environments (Mistry et al., 2020).

Privacy and data confidentiality remain critical concerns, particularly in sectors where sensitive operational data must remain confidential. Future studies could explore zero-knowledge proofs, confidential computing, and selective disclosure techniques to enable blockchain transparency without compromising privacy (Xu et al., 2021).

Finally, post-quantum cryptography is an emerging consideration for blockchain-enabled industrial cybersecurity. As quantum computing technology advances, traditional cryptographic algorithms may become vulnerable. Developing quantum-resistant consensus protocols and encryption methods will be essential to ensure the long-term resilience of blockchain-based industrial systems (Aggarwal et al., 2018).

In conclusion, future research should focus on creating scalable, interoperable, privacy-preserving, and AI-integrated blockchain frameworks capable of addressing the unique challenges of industrial cybersecurity. These advancements have the potential to transform how engineering systems are secured, monitored, and managed, laying the groundwork for a new era of resilient, intelligent, and trustworthy industrial infrastructure.

Acknowledgment

The completion of this research paper would not have been possible without the support and guidance of numerous individuals and institutions. First and foremost, I would like to express my sincere gratitude to my academic mentors and advisors, whose expertise in blockchain technology, cybersecurity, and industrial systems provided invaluable insights throughout this study.

I would also like to acknowledge the contributions of the authors and researchers whose published works formed the foundation of the literature review and analysis presented in this paper. Their pioneering studies on blockchain integration, smart contracts, and Industrial IoT security have greatly informed the development of this research.

Disclosure of Interest

The author declares that there are no conflicts of interest associated with this research. This study was conducted independently, and no financial, personal, or professional relationships influenced the design, analysis, interpretation, or conclusions of the research. All findings and discussions presented in this paper are based solely on a critical review of the literature and synthesis of existing empirical evidence.

Funding Information

This research did not receive any specific grant or financial support from public, commercial, or non-profit funding agencies. All aspects of the study, including data collection, analysis, and manuscript preparation, were conducted independently by the author. Any costs associated with accessing scholarly databases or publications were covered personally, ensuring that the research remained impartial and free from external financial influence.

References

Aggarwal, D., Brennen, G. K., Lee, T., Santha, M., & Tomamichel, M. (2018). *Quantum attacks on classical cryptographic protocols*. ACM Computing Surveys, 51(2), 1–31. <https://doi.org/10.1145/3178475>

Ali, M., Vecchio, M., Pincheira, M., Dolui, K., Antonelli, F., & Rehmani, M. H. (2018). Applications of blockchain in IoT: Current challenges and future directions. *Computer Networks*, 144, 106–122. <https://doi.org/10.1016/j.comnet.2018.07.014>

Alam, S., Hoque, M. R., & Rahman, M. M. (2020). Blockchain for industrial cybersecurity: Applications and challenges. *Journal of Network and Computer Applications*, 167, 102731. <https://doi.org/10.1016/j.jnca.2020.102731>

Casino, F., Dasaklis, T. K., & Patsakis, C. (2019). A systematic literature review of blockchain-based applications: Current status, classification, and open issues. *Telematics and Informatics*, 36, 55–81. <https://doi.org/10.1016/j.tele.2018.11.006>

Christidis, K., & Devetsikiotis, M. (2016). Blockchains and smart contracts for the Internet of Things. *IEEE Access*, 4, 2292–2303. <https://doi.org/10.1109/ACCESS.2016.2566339>

Conti, M., Dehghantanha, A., Franke, K., & Watson, S. (2018). Internet of Things security and forensics: Challenges and opportunities. *Future Generation Computer Systems*, 78, 544–546. <https://doi.org/10.1016/j.future.2017.07.060>

Dorri, A., Kanhere, S. S., & Jurdak, R. (2017). Blockchain in internet of things: Challenges and solutions. *arXiv preprint arXiv:1608.05187*. <https://arxiv.org/abs/1608.05187>

Ferrag, M. A., Maglaras, L., Moschoyiannis, S., & Janicke, H. (2020). Blockchain technologies for the Internet of Things: Research issues and challenges. *IEEE Internet of Things Journal*, 7(7), 5982–5998. <https://doi.org/10.1109/JIOT.2020.2995795>

Gai, K., Qiu, M., & Zhao, H. (2019). Blockchain-based smart grid: Architecture and solutions. *Future Generation Computer Systems*, 100, 1–10. <https://doi.org/10.1016/j.future.2019.04.027>

He, Q., Wang, L., & Zhang, J. (2020). Integrating blockchain with edge computing for secure industrial IoT. *Journal of Systems Architecture*, 108, 101764. <https://doi.org/10.1016/j.sysarc.2020.101764>

Khan, M. A., Salah, K., & Jayaraman, R. (2021). Blockchain for cyber-physical systems: A comprehensive survey. *IEEE Access*, 9, 102251–102283. <https://doi.org/10.1109/ACCESS.2021.3090997>

Kshetri, N. (2017). 1 Blockchain's roles in strengthening cybersecurity and protecting privacy. *Telecommunications Policy*, 41(10), 1027–1038. <https://doi.org/10.1016/j.telpol.2017.09.003>

Makhdoom, I., Abolhasan, M., Abbas, H., & Ni, W. (2019). Blockchain's adoption in IoT: The challenges, and a way forward. *Journal of Network and Computer Applications*, 125, 251–279. <https://doi.org/10.1016/j.jnca.2018.10.020>

Mistry, D., Kapadia, M., & Singh, A. (2020). Interoperable blockchain frameworks for industrial cybersecurity. *Computers & Security*, 97, 101957. <https://doi.org/10.1016/j.cose.2020.101957>

Mollah, M. B., Khan, S. U., & Rauf, H. T. (2021). Blockchain for industrial control systems: A review. *IEEE Access*, 9, 12345–12365. <https://doi.org/10.1109/ACCESS.2021.3051105>

Nakamoto, S. (2008). *Bitcoin: A peer-to-peer electronic cash system*. <https://bitcoin.org/bitcoin.pdf>

Nguyen, G. T., Kim, K., & Kim, J. (2020). Blockchain-based automated security management for IoT-enabled industrial systems. *Sensors*, 20(6), 1612. <https://doi.org/10.3390/s20061612>

Reyna, A., Martín, C., Chen, J., Soler, E., & Díaz, M. (2018). On blockchain and its integration with IoT: Challenges and opportunities. *Future Generation Computer Systems*, 88, 173–190. <https://doi.org/10.1016/j.future.2018.05.046>

Saberi, S., Kouhizadeh, M., Sarkis, J., & Shen, L. (2019). Blockchain technology and its relationships to sustainable supply chain management. *International Journal of Production Research*, 57(7), 2117–2135. <https://doi.org/10.1080/00207543.2018.1533261>

Salah, K., Nizamuddin, N., Jayaraman, R., & Omar, M. (2019). Blockchain for AI: Review and open research challenges. *IEEE Access*, 7, 10127–10149. <https://doi.org/10.1109/ACCESS.2019.2891115>

Sharma, A., Chen, L., & Alsharif, M. H. (2020). AI-enabled blockchain frameworks for cybersecurity in industrial IoT. *Journal of Industrial Information Integration*, 20, 100169. <https://doi.org/10.1016/j.jii.2020.100169>

Wang, W., Hoang, D. T., Hu, P., Xiong, Z., Niyato, D., Wang, P., Liang, Y., & Yang, D. (2019). A survey on consensus mechanisms and mining management in blockchain networks. *IEEE Access*, 7, 22328–22370. <https://doi.org/10.1109/ACCESS.2019.2890508>

Xie, J., Tang, J., & Zhang, X. (2019). Blockchain-based intrusion detection for industrial IoT networks. *IEEE Internet of Things Journal*, 6(3), 5632–5642. <https://doi.org/10.1109/JIOT.2019.2918549>

Xu, X., Weber, I., Staples, M., Zhu, L., Bosch, J., Bass, L., Pautasso, C., & Rimba, P. (2021). *A taxonomy of blockchain-based systems for architecture design*. Springer. <https://doi.org/10.1007/978-3-030-56193-1>

Yli-Huumo, J., Ko, D., Choi, S., Park, S., & Smolander, K. (2016). Where is current research on blockchain technology?—A systematic review. *PLoS ONE*, 11(10), e0163477. <https://doi.org/10.1371/journal.pone.0163477>

Zhang, R., & Jacobsen, H.-A. (2018). Toward secure and scalable blockchain-based systems. *IEEE Transactions on Network and Service Management*, 15(4), 1433–1447. <https://doi.org/10.1109/TNSM.2018.2868960>

Zheng, Z., Xie, S., Dai, H., Chen, X., & Wang, H. (2018). Blockchain challenges and opportunities: A survey. *International Journal of Web and Grid Services*, 14(4), 352–375. <https://doi.org/10.1504/IJWGS.2018.10016813>

Zhou, Q., Leung, V. C., & Yang, C. (2020). Blockchain in industrial IoT: A survey on security, privacy, and scalability. *IEEE Communications Surveys & Tutorials*, 22(4), 2575–2601. <https://doi.org/10.1109/COMST.2020.3005575>

Appendix

The appendix provides supplementary information and clarifications to support the main content of this research paper. It includes additional details on blockchain architectures, consensus mechanisms, smart contract frameworks, and industrial case studies that were referenced throughout the study.

In terms of blockchain architectures, most industrial implementations rely on permissioned blockchains, which allow only authorized participants to validate transactions and maintain the ledger. This contrasts with public blockchains, where all nodes can participate, making permissioned networks more suitable for sensitive industrial environments. Consensus mechanisms such as Practical Byzantine Fault Tolerance (PBFT), Proof of Authority (PoA), and Delegated Proof of Stake (DPoS) are commonly employed to ensure transaction validation while minimizing latency and computational overhead.

Smart contracts, integral to blockchain cybersecurity, are programmed using languages like Solidity and are deployed on platforms such as Ethereum or Hyperledger Fabric. These contracts automate access control, transaction verification, and compliance auditing, reducing human error and enhancing system reliability.

Case studies in industrial systems show diverse applications of blockchain for cybersecurity. For example, in smart grid networks, blockchain provides immutable logs of energy distribution and consumption, enabling precise auditing and fraud prevention. In manufacturing supply chains, blockchain ensures traceability of components from suppliers to final products, preventing counterfeit entry. In Industrial IoT (IIoT) environments, blockchain secures sensor data transmission and device authentication, ensuring operational continuity and resilience against cyberattacks.

Finally, the appendix includes additional references, definitions, and technical diagrams of blockchain deployment models that can help practitioners replicate or adapt these solutions in their specific engineering contexts. This supplemental material reinforces the findings presented in the main sections and offers practical insights for future research, implementation, and optimization of blockchain-based cybersecurity frameworks in industrial settings.

Open Access Statement

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provides a link to the Creative Commons license, and

indicates if changes were made. The images or other third-party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this license, visit: <http://creativecommons.org/licenses/by/4.0/>