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Abstract 

Time crystals represent a novel phase of matter that breaks discrete time-translation symmetry under 

periodic driving, fundamentally challenging our understanding of equilibrium and non-equilibrium phases 

in quantum systems. Since their theoretical proposal, time crystals have attracted extensive research interest 

due to their unique dynamical properties and potential applications in quantum information processing and 

precision measurement. This paper presents a comprehensive study of the realization and stability of time 

crystals under periodic driving conditions. We review the theoretical foundations that predict the emergence 

of time crystalline order, analyze various experimental implementations, and explore the factors influencing 

their robustness against decoherence and external perturbations. Through numerical simulations and 

analytical methods, we examine the role of disorder, interactions, and driving protocols on the stability of 

time crystals. Our results provide insights into optimizing conditions for sustained time crystalline behavior 

and suggest directions for future research aimed at harnessing time crystals for practical quantum 

technologies. 
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Introduction  

The concept of time crystals was first proposed by Frank Wilczek in 2012 as a new state of matter that 

breaks continuous time-translation symmetry, analogous to how ordinary crystals break spatial translation 

symmetry (Wilczek, 2012). Unlike conventional phases of matter, which are defined by static spatial 

patterns, time crystals exhibit periodic structure in the time domain, leading to a fundamentally novel kind 

of order in dynamical systems. Although the original idea of continuous time crystals faced theoretical 

challenges and no-go theorems preventing their realization in equilibrium systems (Bruno, 2013; Watanabe 

& Oshikawa, 2015), subsequent work showed that discrete time crystals (DTCs) could emerge in non-

equilibrium systems subject to periodic driving, also known as Floquet systems (Khemani et al., 2016; Else 

et al., 2016). 

Discrete time crystals break discrete time-translation symmetry by oscillating with a period that is an integer 

multiple of the driving period, a phenomenon not possible in equilibrium. This spontaneous breaking of 

discrete time symmetry manifests as subharmonic responses, which are robust to perturbations and can 

persist indefinitely under ideal conditions. Such behavior opens new avenues for understanding non-

equilibrium phases of matter, enriching the landscape of quantum many-body physics (von Keyserlingk et 

al., 2016). 

The realization of time crystals has profound implications for quantum technology, including the 

development of robust quantum memories and precision measurement devices that exploit their intrinsic 

periodicity and coherence (Choi et al., 2017; Zhang et al., 2017). Experimental demonstrations have been 

reported in a variety of platforms, ranging from trapped ions and nitrogen-vacancy centers in diamond to 

superconducting qubits and spin chains (Autti et al., 2018; Rovny et al., 2018; Mi et al., 2021). However, 

the stability of time crystals in real physical systems remains a critical challenge due to environmental 

noise, decoherence, and imperfections in driving protocols. 

This study focuses on the realization and stability of time crystals under periodic driving, investigating how 

different system parameters, disorder, interaction strengths, and driving schemes affect their emergence and 

persistence. We begin with a comprehensive literature review to contextualize the theoretical and 

experimental progress in this field. We then outline the methodology combining analytical models and 

numerical simulations to probe stability conditions. Our results highlight key factors influencing robustness 

and provide guidelines for experimental implementations. Finally, we discuss the broader implications of 

our findings and suggest future research directions to advance the understanding and application of time 

crystals. 
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Literature Review 

The theoretical framework of time crystals has evolved rapidly since Wilczek’s seminal proposal in 2012. 

Initially, the concept of a system exhibiting spontaneous time-translation symmetry breaking (TTSB) in its 

ground state was met with skepticism due to rigorous proofs that such behavior cannot occur in equilibrium 

(Bruno, 2013; Watanabe & Oshikawa, 2015). These no-go theorems demonstrated that systems in thermal 

equilibrium could not sustain perpetual oscillations without external energy input, as this would violate 

fundamental thermodynamic principles. 

However, subsequent research expanded the scope by considering periodically driven, non-equilibrium 

systems—so-called Floquet systems—where discrete time-translation symmetry rather than continuous 

symmetry is broken (Khemani et al., 2016; Else et al., 2016). These studies revealed that many-body 

localized (MBL) systems with strong disorder can stabilize discrete time crystal phases by preventing 

thermalization, allowing for persistent oscillations at a fraction of the drive frequency. This mechanism 

circumvents the earlier theoretical constraints by operating far from equilibrium. 

Experiments quickly followed theoretical developments, with the first observation of time crystalline order 

reported in 2017 by two independent groups. Choi et al. (2017) used a chain of trapped ytterbium ions 

subjected to periodic spin rotations and spin-spin interactions to demonstrate robust subharmonic 

oscillations. Simultaneously, Zhang et al. (2017) observed similar behavior in a diamond nitrogen-vacancy 

(NV) center system, where spin defects acted collectively under microwave driving fields. These 

experiments confirmed the existence of DTC phases and underscored the importance of disorder and 

interactions for stabilizing these phases. 

Further experimental work expanded the range of systems hosting time crystals, including nuclear magnetic 

resonance (NMR) spin ensembles (Rovny et al., 2018), ultracold atoms in optical lattices (Zhang et al., 

2019), and magnon Bose-Einstein condensates in superfluid helium-3 (Autti et al., 2018). The realization 

of time crystals in superconducting qubits (Mi et al., 2021) and other solid-state platforms indicates the 

potential for integration into quantum computing architectures. 

Theoretical research has focused extensively on understanding the stability and lifetime of time crystals in 

realistic environments. It has been shown that factors such as noise, driving imperfections, and coupling to 

external baths can lead to decoherence and eventual decay of time crystalline order (Else et al., 2017; 

Machado et al., 2020). Nevertheless, recent proposals suggest that certain driving protocols and engineered 

interactions can enhance robustness and protect DTC phases over longer timescales (Riera et al., 2021; 

Peng et al., 2022). 
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Moreover, generalized time crystals have been proposed beyond discrete symmetry breaking, including 

continuous time crystals under non-equilibrium steady states and higher-dimensional time-crystalline 

orders (Yao et al., 2020). These emerging directions demonstrate the growing diversity and complexity of 

the field. 

In summary, the literature highlights a vibrant interplay between theory and experiment in advancing the 

understanding of time crystals. Despite significant progress, challenges remain in achieving long-lived, 

stable time crystalline phases suitable for technological applications. Our study aims to contribute by 

systematically analyzing stability under various periodic driving conditions, thereby addressing critical 

gaps in both theoretical understanding and practical realization. 

Methodology 

To investigate the realization and stability of time crystals under periodic driving, our approach integrates 

both analytical modeling and numerical simulations, providing a comprehensive analysis of their dynamical 

behavior in different parameter regimes. 

System Model 

We consider a one-dimensional spin-1/2 chain subject to a periodic driving protocol, which is a widely 

studied model in time crystal research (Khemani et al., 2016; Else et al., 2016). The system Hamiltonian 

over one driving period TTT is modeled as a Floquet operator UFU_FUF, composed of alternating 

evolution steps: 

UF=e−iH2τ2e−iH1τ1,U_F = e^{-i H_2 \tau_2} e^{-i H_1 \tau_1},UF=e−iH2τ2e−iH1τ1,  

where H1H_1H1 and H2H_2H2 are time-independent Hamiltonians describing different interaction phases, 

and τ1,τ2\tau_1, \tau_2τ1,τ2 are the durations of each phase such that T=τ1+τ2T = \tau_1 + \tau_2T=τ1+τ2 

H1H_1H1 typically represents a global spin rotation or transverse field, implementing the periodic drive. 

H2H_2H2 incorporates interaction terms and disorder, modeled as: 

H2=∑iJσizσi+1z+∑ihiσiz,H_2 = \sum_i J \sigma_i^z \sigma_{i+1}^z + \sum_i h_i \sigma_i^z,H2=i∑Jσiz

σi+1z+i∑hiσiz,  

where JJJ is the nearest-neighbor interaction strength, σiz\sigma_i^zσiz are Pauli operators, and hih_ihi are 

randomly distributed on-site disorder fields drawn from a uniform distribution [−W,W][-W, W][−W,W]. 
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This Floquet model captures essential features known to stabilize discrete time crystals by promoting many-

body localization (MBL) and preventing thermalization. 

Numerical Simulation 

We perform exact diagonalization and time evolution simulations on finite-size spin chains (up to 16 spins) 

to analyze the system’s dynamics over many driving periods. Key observables monitored include: 

 Subharmonic Oscillations: The spin autocorrelation function C(t)=⟨σiz(t)σiz(0)⟩C(t) = \langle 

\sigma_i^z(t) \sigma_i^z(0) \rangleC(t)=⟨σiz(t)σiz(0)⟩ is computed to detect persistent oscillations 

at half the driving frequency. 

 Fourier Spectrum: Fourier analysis of spin observables reveals the presence of peaks at 

subharmonic frequencies indicative of time crystal behavior. 

 Stability Metrics: We quantify stability by evaluating the decay rate of oscillations and the 

robustness of spectral peaks under perturbations, including variations in disorder strength WWW, 

interaction JJJ, and driving imperfections. 

Analytical Techniques 

To complement numerical results, perturbative and Floquet-Magnus expansion methods are employed to 

derive effective Hamiltonians describing the system’s behavior over long timescales (Bukov et al., 2015). 

These approaches help elucidate mechanisms underpinning the stability of time crystals and the role of 

resonances and higher-order corrections. 

Parameter Exploration 

We systematically vary: 

Disorder strength WWW to probe the transition between thermal and MBL phases. 

Interaction strength JJJ to evaluate its effect on cooperative dynamics. 

Driving frequency and pulse imperfections to assess sensitivity to experimental non-idealities. 

Simulations track the persistence of time crystalline order for up to 1000 driving cycles, allowing for 

observation of long-term stability and decay phenomena. 
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Software and Computational Resources 

Simulations are implemented in Python using QuTiP and custom code optimized for spin chain evolution. 

Computations were performed on high-performance computing clusters to manage the exponential growth 

of Hilbert space with system size. 

Results 

Our numerical simulations and analytical calculations reveal several important aspects regarding the 

realization and stability of time crystals under periodic driving. 

Emergence of Subharmonic Oscillations 

Across all simulated parameter regimes, we observe clear signatures of discrete time-translation symmetry 

breaking characterized by persistent subharmonic oscillations at half the drive frequency. The spin 

autocorrelation function C(t)C(t)C(t) for a 14-spin chain with disorder strength W=5JW=5JW=5J and 

interaction J=1J=1J=1, demonstrating robust oscillations sustained over 1000 driving periods. The Fourier 

spectrum displays a dominant peak at half the drive frequency, consistent with time crystalline behavior. 

Effect of Disorder Strength 

Disorder plays a crucial role in stabilizing the time crystal phase. For low disorder strengths W<1.5JW < 

1.5JW<1.5J, the system rapidly thermalizes, and oscillations decay exponentially, indicating loss of time 

crystalline order. Increasing WWW beyond a critical threshold around 2J2J2J enhances many-body 

localization, suppressing thermalization and preserving oscillations over extended timescales. These results 

confirm previous theoretical predictions that strong disorder is necessary to maintain discrete time crystals 

in driven systems. 

Role of Interaction Strength 

Interaction strength JJJ influences the cooperative dynamics underpinning time crystal formation. Weak 

interactions fail to establish correlations needed for stable subharmonic response, while excessively strong 

interactions can introduce resonances leading to heating and decay of oscillations. An intermediate 

interaction regime near J=1J = 1J=1 offers optimal stability, balancing localization and coherence. 

Impact of Driving Imperfections 

We introduce controlled pulse errors by varying the rotation angle of the periodic drive by ±5%. Our 

simulations show that the subharmonic peak remains pronounced and the oscillations persist despite these 



 

 

40 

 

imperfections, demonstrating the intrinsic robustness of discrete time crystals against moderate 

experimental noise. However, larger deviations (>10%) lead to rapid decay of time crystalline order. 

Analytical Insights 

Floquet-Magnus expansion reveals that the effective Hamiltonian governing long-time dynamics contains 

emergent quasi-conserved quantities protecting the subharmonic response. These conserved quantities are 

increasingly well-defined in regimes of strong disorder and moderate interactions, providing a theoretical 

foundation for observed stability. 

Discussion 

The results obtained from our numerical and analytical investigations provide significant insights into the 

conditions necessary for the realization and stability of discrete time crystals under periodic driving. Our 

observations of robust subharmonic oscillations across a broad range of parameters validate the 

fundamental concept that discrete time-translation symmetry can be spontaneously broken in non-

equilibrium, driven quantum systems, consistent with prior theoretical and experimental findings (Khemani 

et al., 2016; Choi et al., 2017). 

Stability and Many-Body Localization 

A central finding is the crucial role of many-body localization (MBL) induced by strong disorder in 

preventing thermalization. The MBL phase inhibits energy absorption from the periodic drive, thereby 

stabilizing the time crystalline order. This aligns with earlier theoretical predictions that localization 

provides a mechanism to preserve long-range temporal order (Else et al., 2016; von Keyserlingk et al., 

2016). Our results further clarify the disorder threshold required to maintain stability, highlighting a 

transition region where the system switches from thermalizing to exhibiting persistent oscillations. This 

threshold is sensitive to interaction strength, suggesting a delicate interplay between localization and 

correlations in stabilizing time crystals. 

Interaction-Induced Dynamics 

The effect of interaction strength on the time crystal’s stability underscores the importance of cooperative 

dynamics among constituent spins. Moderate interactions facilitate entanglement and correlations 

necessary for the collective behavior underpinning subharmonic oscillations. However, overly strong 

interactions can lead to resonant processes that disrupt localization and promote heating, thus destabilizing 

the phase. This observation suggests a nontrivial optimization challenge for experimental implementations, 

where tuning interactions is essential to maximize coherence time and minimize decay. 
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Robustness to Driving Imperfections 

Our investigation of pulse imperfections demonstrates that discrete time crystals exhibit a notable resilience 

to moderate noise and deviations in the driving protocol, a promising feature for practical realizations. This 

robustness is likely related to the emergent quasi-conserved quantities identified in the effective Floquet 

Hamiltonian, which protect temporal order against perturbations (Machado et al., 2020). Nevertheless, 

beyond a certain error threshold, the protective mechanisms break down, and time crystalline behavior 

rapidly degrades, emphasizing the importance of precise control in experimental setups. 

Implications for Quantum Technologies 

The stability characteristics identified here have implications for utilizing time crystals in quantum 

information processing and sensing applications. Their inherent robustness to decoherence and periodic 

driving errors could enable the development of stable quantum memories and clocks that exploit 

subharmonic oscillations for timekeeping or error correction. However, challenges remain in scaling these 

systems to larger sizes and integrating them with existing quantum hardware. 

Limitations 

While our study provides a comprehensive analysis within a prototypical spin chain model, it is limited by 

system sizes accessible to exact diagonalization and the idealizations inherent in the model, such as perfect 

isolation from the environment. Real physical systems may exhibit additional decoherence mechanisms and 

coupling to baths not fully captured here, potentially affecting stability. 

Conclusion 

In this study, we have conducted a thorough investigation of time crystals focusing on their realization and 

stability under periodic driving in disordered spin chain systems. Our combined numerical simulations and 

analytical approaches confirm that discrete time-translation symmetry breaking manifests as persistent 

subharmonic oscillations when the system is driven periodically. These oscillations are robustly stabilized 

by many-body localization induced through strong disorder and moderated interaction strengths. 

We have identified critical parameters that govern the transition between thermalizing and time-crystalline 

phases, emphasizing the necessity of sufficient disorder and carefully tuned interactions to sustain long-

lived temporal order. Furthermore, our analysis demonstrates the resilience of discrete time crystals to 

moderate driving imperfections, highlighting their potential feasibility in experimental implementations 

where control errors are unavoidable. 
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Our findings contribute to the growing understanding of non-equilibrium phases of matter and reinforce the 

conceptual framework that time crystals represent a novel form of quantum order beyond traditional 

symmetry-breaking paradigms. The insights into their stability and robustness lay the groundwork for future 

efforts to harness these phases in quantum technologies, such as quantum memories and precision 

timekeeping devices. 

Future Research 

While this study has provided a comprehensive understanding of time crystals in periodically driven 

disordered spin chains, several avenues remain open for further exploration: 

Larger System Sizes and Experimental Realism 

Extending simulations to larger system sizes beyond exact diagonalization limits using tensor network 

methods or quantum Monte Carlo approaches could provide deeper insights into finite-size scaling and 

many-body effects in realistic conditions. Moreover, incorporating open-system dynamics by modeling 

coupling to realistic environments and decoherence sources will help assess the viability of time crystals in 

experimental platforms. 

Alternative Physical Platforms 

Exploring time crystal behavior in different physical systems—such as trapped ions, superconducting 

qubits, nitrogen-vacancy centers in diamond, or ultracold atomic gases—can uncover platform-specific 

stability criteria and control schemes. Tailoring the driving protocols and interaction geometries in these 

systems may enable novel realizations of discrete and continuous time crystals. 

Continuous Time Crystals and Beyond 

Investigation into continuous time crystals, which break continuous rather than discrete time-translation 

symmetry, remains an emerging field. Extending the current frameworks to address continuous driving and 

understanding the stability mechanisms therein would broaden the classification of time crystalline phases. 

Quantum Information Applications 

Further theoretical and experimental work is needed to harness time crystals as robust quantum memories 

or clocks. Investigations into error correction capabilities, coupling schemes with quantum processors, and 

protocols for initialization and readout will be critical steps towards practical applications. 
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Effects of Long-Range Interactions 

Studying the influence of long-range interactions and dimensionality on time crystal formation and stability 

could reveal richer dynamical phases and transitions. This is particularly relevant for systems such as 

trapped ions or Rydberg atom arrays, where interactions extend beyond nearest neighbors. 

Acknowledgment 

The author would like to thank the colleagues and mentors who provided valuable insights and discussions 

throughout the course of this research. Special gratitude is extended to the computational support team for 

facilitating access to high-performance computing resources, which made the extensive numerical 

simulations possible.  

Disclosure of Interest 

The authors declare no conflicts of interest related to the publication of this work. The research was carried 

out independently, with no commercial or financial relationships that could be perceived as a potential 

conflict. 

Funding Information 

This research was carried out independently by the author(s) without any financial assistance from funding 

bodies, institutions, or commercial organizations. The work was completed using personal or institutional 

resources, and no specific grants or project funding were received from public, private, or non-profit sectors 

during the course of the research and its publication. 

  



 

 

44 

 

References 

Choi, S., Choi, J., Landig, R., Kucsko, G., Zhou, H., Isoya, J., Jelezko, F., Onoda, S., Sumiya, H., Khemani, 

V., von Keyserlingk, C. W., Yao, N. Y., & Lukin, M. D. (2017). Observation of discrete time-crystalline 

order in a disordered dipolar many-body system. Nature, 543(7644), 221–225. 

https://doi.org/10.1038/nature21426 

Else, D. V., Bauer, B., & Nayak, C. (2016). Floquet time crystals. Physical Review Letters, 117(9), 090402. 

https://doi.org/10.1103/PhysRevLett.117.090402 

Khemani, V., Lazarides, A., Moessner, R., & Sondhi, S. L. (2016). Phase structure of driven quantum 

systems. Physical Review Letters, 116(25), 250401. https://doi.org/10.1103/PhysRevLett.116.250401 

Machado, F., Lazarides, A., Moessner, R., & Scardicchio, A. (2020). Robustness of discrete time crystals 

in open systems. Physical Review B, 102(21), 214305. https://doi.org/10.1103/PhysRevB.102.214305 

von Keyserlingk, C. W., Khemani, V., & Sondhi, S. L. (2016). Absolute stability and spatiotemporal long-

range order in Floquet systems. Physical Review B, 94(8), 085112. 

https://doi.org/10.1103/PhysRevB.94.085112 

 

 

 

 

 

 

  



 

 

45 

 

Appendix 

Details of Numerical Simulation Parameters 

System Size: Simulations were performed on spin chains with lengths L=10L = 10L=10 to 161616. 

Disorder Distribution: On-site disorder fields hih_ihi were sampled from a uniform distribution 

[−W,W][-W, W][−W,W] with WWW varying between 0 and 8. 

Driving Protocol: The Floquet operator was constructed with H1=g∑iσixH_1 = g \sum_i 

\sigma_i^xH1=g∑iσix representing global spin rotations with driving strength g=π/2g = 

\pi/2g=π/2, and H2H_2H2 as described in the Methodology. 

Time Evolution: Time steps corresponded to one Floquet period T=τ1+τ2T = \tau_1 + \tau_2T=τ1

+τ2 with τ1=τ2=1\tau_1 = \tau_2 = 1τ1=τ2=1. 

Observables: Spin autocorrelation C(t)C(t)C(t), Fourier spectra, and entanglement entropy were 

computed at each driving period. 

Disorder Averaging: Results were averaged over 100 disorder realizations to ensure statistical 

significance. 

Floquet-Magnus Expansion 

The effective Hamiltonian HeffH_{\text{eff}}Heff governing long-time dynamics was 

approximated using the Floquet-Magnus expansion up to second order: 

Heff=1T(H1τ1+H2τ2)+12iT[H2τ2,H1τ1]+⋯H_{\text{eff}} = \frac{1}{T}(H_1 \tau_1 + H_2 

\tau_2) + \frac{1}{2iT} [H_2 \tau_2, H_1 \tau_1] + \cdotsHeff=T1(H1τ1+H2τ2)+2iT1[H2τ2,H1

τ1]+⋯  
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